303
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Design, molecular dynamics simulation, and investigation of the mechanical behavior of DNA origami nanotubes with auxetic and honeycomb structures

, &
Pages 14822-14831 | Received 04 Jan 2023, Accepted 22 Feb 2023, Published online: 08 Mar 2023
 

Abstract

Numerous applications of DNA origami nanotubes for load-bearing purposes necessitate the improvement of properties and mechanical behavior of these types of structures, as well as the use of innovative structures such as metamaterials. To this end, the present study aims to investigate the design, molecular dynamics (MD) simulation, and mechanical behavior of DNA origami nanotube structures consisting of honeycomb and re-entrant auxetic cross-sections. The results revealed both structures kept their structural stability. In addition, DNA origami based-nanotube with auxetic cross-section exhibits negative Poisson’s ratio (NPR) under tensile loading. Furthermore, MD simulation results demonstrated that the values of stiffness, specific stiffness, energy absorption, and specific energy absorption in the structure with an auxetic cross-section are higher than that of a honeycomb cross-section, similar to their behavior in macro-scale structures. The finding of this study is to propose re-entrant auxetic structure as the next generation of DNA origami nanotubes. In addition, it can be utilized to aid scientists with the design and fabrication of novel auxetic DNA origami structures.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare that they do not have any competing interests to disclose.

Correction Statement

This article has been corrected with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.