83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational study of inclusion complexes of V-type nerve agents (VE, VG, VM, VR and VX) with β-cyclodextrin

&
Pages 2681-2697 | Received 06 Mar 2023, Accepted 19 Apr 2023, Published online: 05 May 2023
 

Abstract

The effective detoxification of organophosphate (OP) nerve agents (OPNAs) is a challenging issue for scientists. The host–guest inclusion complexes of five V-type nerve agents (VE, VG, VM, VR and VX) with β-cyclodextrin (β-CD) have been studied by combining quantum mechanical (QM) calculations and molecular dynamics (MD) simulations. The frontier molecular orbital (FMO) and molecular electrostatic potential (MEP) have been analyzed to describe the reactivity parameters and electronic properties. The obtained results clearly reveal that stable complexes were formed in both vacuum and water media, and the complexation process occurred spontaneously. To understand non-covalent interactions, natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) have been used. IR and Raman spectra have been calculated to confirm the formation of complexes and also thermodynamic parameters have been investigated. It was demonstrated that in addition to van der Waals interactions, the presence of intermolecular hydrogen bonds enhances the stability of these complexes. Furthermore, MD simulations were carried out to get a better insight into the inclusion process of the above complexes. From MD simulations, all simulated systems reached full equilibration at 1000 ps and the V-agent molecules consistently remained in the β-CD cavity and only had vibrational motion inside the cavity. More importantly, MD simulations support the findings of QM calculations and indicate that hydrogen bonding can help the leaving groups of V-agents to be released and them to be hydrolyzed. All results have shown that the VR agent formed the most stable complex with β-CD molecule than that of other agents.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare that they have no conflict of interest.

Additional information

Funding

The University of Sistan and Baluchestan supported this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.