86
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Analysing the genetic code degeneracy: a consequence towards bacterial staining

, , , ORCID Icon & ORCID Icon
Pages 4567-4577 | Received 03 Mar 2023, Accepted 29 May 2023, Published online: 06 Jun 2023
 

Abstract

As 20 naturally occurring amino acids are coded by 61 mRNA codons out of 64, it is obvious that 61→20 cannot have one-to-one mapping which generates the problem of codon degeneracy. Despite several efforts there is no specific outcome which can describe this well-known enigmatic degeneracy of the codon table. Since, every biological behaviour is regulated by protein which in turn consists of amino acids bearing the inherent characteristics of degeneracy among mRNA codons (Crick F.H.C. The Origin of the Genetic Code. J. Mol. Biol.1968; 38: 367-379), it is worthy to analyse the impact of such degeneracy on biological behaviours. Here, based on mathematical models using the concept of b-type of the nucleotide bases and hamming distances, an effort has been initiated to understand the impact of biasness of genetic code degeneracy on biological behaviours. The proposed models have been utilized to understand the characteristic features of bacterial genes of gram-positive and gram-negative bacteria. To the best of our knowledge, this is the first mathematical model to capture the effect of genetic code degeneracy, showing a paradigm towards understanding the behavioural difference between gram-positive and gram-negative bacteria, and thereby opening a new avenue for revealing differential biological properties.

Communicated by Ramaswamy H. Sarma

Acknowledgments

The authors would like to thank Mr. Dipten Laskar, research fellow of Nagaland university for his input in helping with writing the Phyton code for measuring codon frequency.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

No funding was received to perform this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.