226
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

On the interactions of peptides with gold nanoparticles: effects of sequence and size

, &
Pages 4429-4441 | Received 30 Dec 2022, Accepted 28 May 2023, Published online: 12 Jun 2023
 

Abstract

Peptide-based self-assembly and synthesis techniques have emerged as a viable approach to designing active and stable inorganic nanostructures in aqueous media. In the present study, we use all-atom molecular dynamic (MD) simulations to study the interactions of ten short peptides (namely A3, AgBP1, AgBP2, AuBP1, AuBP2, GBP1, Midas2, Pd4, Z1, and Z2) with different gold nanoparticles (of different diameters ranging from 2 to 8 nm). Our MD simulation results imply that the gold nanoparticles have a remarkable effect on the stability and conformational properties of peptides. Moreover, the size of the gold nanoparticles and the type of peptide amino acid sequences play important roles in the stability of the peptide-AuNP complexes. Our results reveal that some amino acids such as Tyr, Phe, Met, Lys, Arg, and Gln have direct contact with the metal surface in comparison with Gly, Ala, Pro, Thr, and Val residues. The peptide adsorption on the surface of the gold nanoparticles is favorable from the energetic viewpoint, in which the van der Waals (vdW) interactions between the peptides and metal surface can be considered as one of the driving forces for the complexation process. The calculated Gibbs binding energies indicate that AuNPs have more sensitivity against the GBP1 peptide in the presence of different peptides. Overall, the results of this study can provide new insight into the peptide interaction with the gold nanoparticles from the molecular viewpoint, which can be important for designing new biomaterials based on the peptides and gold nanoparticles.

Communicated by Ramaswamy H. Sarma

Acknowledgements

We hereby acknowledge the University of California, Berkeley for providing computational facilities.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.