84
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Computational Prediction of 3,5-Diaryl-1H-Pyrazole and spiropyrazolines derivatives as potential acetylcholinesterase inhibitors for alzheimer disease treatment by 3D-QSAR, molecular docking, molecular dynamics simulation, and ADME-Tox

, , , , , , , , , & show all
Received 03 Sep 2022, Accepted 20 Aug 2023, Published online: 01 Sep 2023
 

Abstract

The efficacy of 40 synthesized variants of 3,5-diaryl-1H-pyrazole and spiropyrazoline’ derivatives as acetylcholinesterase inhibitors is verified using a quantitative three-dimensional structure-activity relationship (3D-QSAR) by comparative molecular field analysis (CoMFA) and molecular similarity index analysis (CoMSIA) models. In this research, different field models proved that CoMSIA/SE model is the best model with high predictive power compared to several models (Qved2 = O.65; R2 = 0.980; R2test = 0.727). Also, contour maps produced by CoMSIA/SE model have been employed to prove the key structural needs of the activity. Consequently, six new compounds have been generated. Among these compounds, M4 and M5 were the most active but remained toxic and had poor absorption capacities. While the M1, M2, M3 and M6 remained highly active while respecting ADMET's characteristics. Molecular docking results showed compound M2 better with acetylcholinesterase than compound 22. The interactions are classical hydrogen bonding with residues TYR:124, TYR:72, and SER:293, which play a critical role in the biological activity as AChE inhibitors. MD results confirmed the docking results and showed that compound M2 had satisfactory stability with (ΔGbinding = −151.225 KJ/mol) in the active site of AChE receptor compared with compound 22 (ΔGbinding = −133.375 KJ/mol). In addition, both compounds had good stability regarding RMSD, Rg, and RMSF. The previous results show that the newly designed compound M2 is more active in the active site of AChE receptor than compound 22.

Communicated by Ramaswamy H. Sarma

    Highlights

  • Low acetylcholine levels and amyloid deposits (AB) are among the leading causes of Alzheimer's disease.

  • Five new derivatives were designed as potential Alzheimer's disease inhibitors using a three-dimensional quantitative activity relationship (3D-QSAR).

  • Molecular docking and molecular dynamics results showed that the proposed compound M3 remained stable at the receptor's active site.

  • The inhibitor activity can be improved by replacing the R groups with hydrogen bond acceptors or larger groups or atoms.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.