75
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design of prodrug for stereoisomers of omapatrilat to cross the blood-brain barrier using docking, homology modeling, MD, and QM/MM methods

&
Received 02 Jun 2023, Accepted 09 Sep 2023, Published online: 20 Sep 2023
 

Abstract

In this study, we designed a suitable ester prodrug for omapatrilat to penetrate the blood-brain barrier and treat CNS diseases. Based on the ADMET properties, the methyl carboxylate ester of omapatrilat was chosen from among several prodrug structures. Sixteen methyl carboxylate esters were constructed for omapatrilat. The structure of brain carboxylesterase was derived via homology modeling, and molecular docking was used to determine the most potent stereoisomers against brain carboxylesterase. The top three stereoisomer complexes, and the apo form of the protein, were then considered using molecular dynamics simulation and MM/GBSA analysis. Following the simulation, structural analysis was performed using RMSD, RMSF, Rg, and hydrogen bond analysis tools. Our data demonstrated that the prodrug of RSSR is a suitable structure for crossing the blood-brain barrier and binding to brain carboxylesterase. In addition, we found via QM/MM calculation that the catalytic reaction of the prodrug of RSSR against brain carboxylesterase occurs via two steps, including acylation and diacylation steps. Based on our findings, we propose a clinical trial of a methyl carboxylate ester prodrug of omapatrilat’s RSSR for the treatment of brain diseases.

Communicated by Ramaswamy H. Sarma

Acknowledgements

We would like to express our sincere gratitude to Professor Fabio Polticelli from the Department of Sciences, University Roma Tre for his valuable guidance.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

The datasets supporting the results and conclusion of this manuscript are included within the article and its Supplementary Information files.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.