60
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Decoding molecular mechanism of species-selective targeting of fungal versus human HSP90 using multiple replica molecular dynamics simulations and binding free energy calculations

, , , , , & show all
Received 31 Jul 2023, Accepted 09 Oct 2023, Published online: 18 Oct 2023
 

Abstract

As a highly evolutionarily conserved molecular chaperone, heat shock protein (HSP90), plays an important role in virulence traits, representing a therapeutic target for the treatment of fungal infections. The close evolutionary relationship between fungi and their human hosts poses a key challenge for the development of selective antifungal agents. In this work, molecular docking, multiple replica microsecond-based molecular dynamics (MD) simulations, and binding free energy calculations were performed to decode molecular mechanism of species-selective targeting of fungal versus human HSP90 triggered by the compound A11. MD simulations reveal that binding of compound A11 to human HSP90 nucleotide-binding domain (NBD) leads to obvious conformational changes relative to fungal HSP90 NBD. Binding free energy calculations show that the binding of compound A11 to fungal HSP90 NBD is stronger than that to human HSP90 NBD. Per residue-based free energy decomposition analysis was used to evaluate the inhibitor − residue interaction profile. The results efficiently identify the hot spot residues that play vital roles in favorable binding of compound A11 to fungal HSP90 NBD. This study is expected to provide a useful guidance for the development of selective inhibitors toward fungal HSP90.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by Natural Science Foundation of Shandong Province (Grant No. ZR2020MH322).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.