82
Views
0
CrossRef citations to date
0
Altmetric
Research Article

High-throughput screening and in vitro evaluation of CSB-0914; a novel small molecule NF-κB inhibitor attenuating inflammatory responses through NF-κB, Nrf2 and HO-1 cross-talk

, , , , , & show all
Received 14 Jun 2023, Accepted 05 Dec 2023, Published online: 21 Dec 2023
 

Abstract

Unpleasant side effects of standard inflammatory drugs urges search for novel therapeutic candidates. This study aims in identifying novel anti-inflammatory NF-κB inhibitor by high-throughput computational and in-vitro pre-clinical approaches. Lead candidate selection was conducted by the use of computational docking molecular-dynamic simulations. The RBL-2H3 cell line, derived from rat basophils, was used to evaluate the release of cytokines and degranulation. The study focused on the study of neutrophil elastase and its role in cellular motility. Flow cytometry was utilized to evaluate the activation of basophils and the expression of critical signaling proteins. High throughput screening identified CSB-0914 to stably bind NF-κB-p50 subunit. Dose based loss in T NF-α and IL-2 release were observed in RBL-2H3 cells in addition to degranulation inhibition by CSB-0914. The compound demonstrated significant efficacy in reducing basophil activation assay induced by FcεRI receptors, with an IC50 value of 98.41 nM.. A dose dependent decrease in neutrophil migration and elastase were observed when treated with CSB- 0914. The compound was effective in decreasing. Upon stimulation, RBL-2H3 cells exhibited phosphorylation of NF-κB p-65 as well as upregulation of the Nrf2 and HO-1 signaling pathways. Collectively, our study has successfully identified a novel inhibitor called CSB-0914 that effectively regulates inflammatory responses. These reactions are primarily mediated by the interplay between NF-κB, Nrf2, and HO-1. The findings of this study provide support for the need to conduct more research on CSB-0914 with the aim of its development as a pharmaceutical agent for anti-inflammatory purposes.

Communicated by Ramaswamy H. Sarma

Authors’ contributions

All authors of this manuscript have substantial contributions and deserve authorship in the manuscript.

Disclosure statement

Authors declare that there is no any conflict of interest related to this study.

Additional information

Funding

The author extend appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through grant number R.G.P.1/283/44.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.