52
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Proposing of fungal endophyte secondary metabolites as a potential inhibitors of 2019-novel coronavirus main protease using docking and molecular dynamics

, , , , &
Received 16 Mar 2023, Accepted 15 Jan 2024, Published online: 29 Jan 2024
 

Abstract

In this study, the inhibitory potential of 99 fungal derived secondary metabolites was predicted against SARS-CoV-2 main protease by using of computational approaches. This protein plays an important role in replication and is one of the important targets to inhibit viral reproduction. Among the 99 reported compounds, the 9 of them with the highest binding energy to Mpro obtained from the molecular docking method were selected for the molecular dynamic simulations. The compounds were then investigated by using the SwissADME serve to evaluate the compounds in terms of pharmacokinetic and druglikness properties. The overall results of different analysis show that the compound RKS-1778 is potentially more effective than others and form strong complexes with viral protease. It also had better pharmacokinetic properties than other metabolites, so predicted to be a suitable candidate as anti SARS-CoV-2 bioactive.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors gratefully acknowledge Kermanshah University of Medical Sciences for financial support. Grant number [4020578].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.