139
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Revolutionizing and identifying novel drug targets in Citrobacter koseri via subtractive proteomics and development of a multi-epitope vaccine using reverse vaccinology and immuno-informatics

, , ORCID Icon, , , , , , , , , & show all
Received 16 Nov 2023, Accepted 04 Feb 2024, Published online: 26 Feb 2024
 

Abstract

Citrobacter koseri is a gram-negative rod that has been linked to infections in people with significant comorbidities and immunocompromised immune systems. It is most commonly known to cause urinary tract infections. Thus, the development of an efficacious C. koseri vaccine is imperative, as the pathogen has acquired resistance to current antibiotics. Subtractive proteomics was employed during this research to identify potential antigenic proteins to design an effective vaccine against C. koseri. The pipeline identified two antigenic proteins as potential vaccine targets: DP-3-O-acyl-N-acetylglucosamine deacetylase and Arabinose 5-phosphate isomerase. B and T cell epitopes from the specific proteins were forecasted employing several immunoinformatic and bioinformatics resources. A vaccine was created using a combination of seven cytotoxic T cell lymphocytes (CTL), five helper T cell lymphocyte (HTL), and seven linear B cell lymphocyte (LBL) epitopes. An adjuvant (β-defensin) was added to the vaccine to enhance immunological responses. The created vaccine was stable for use in humans, highly antigenic, and non-allergenic. The vaccine’s molecular and interactions binding affinity with the human immunological receptor TLR3 were studied using MMGBSA, molecular dynamics (MD) simulations, and molecular docking analyses. E. coli (strain-K12) plasmid vector pET-28a (+) was used to examine the ability of the vaccine to be expressed. The vaccine shows great promise in terms of developing protective immunity against diseases, based on the results of these computer experiments. However, in vitro and animal research are required to validate our findings.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare no competing interests.

Data availability statement

Data is contained with the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.