91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A simulation-based approach to target Zika virus RNA-dependent RNA polymerase with marine compounds for antiviral development

ORCID Icon, , , , &
Received 15 Dec 2023, Accepted 16 Feb 2024, Published online: 28 Feb 2024
 

Abstract

Despite significant efforts, currently, there is no particular drug available to treat Zika virus (ZIKV) infection, highlighting the urgent need for effective therapeutic interventions. To identify putative inhibitors of the ZIKV RdRp protein’s RNA binding function, the present study applied an extensive in-silico drug discovery methodology. The initial phase involved virtual screening using Lipinski’s rule of five as a filter, ensuring the selection of molecules with favorable pharmacokinetic properties. This process yielded 238 compounds with promising docking scores, ranging from −6.0 to −7.48 kcal/mol, indicative of their potential binding affinity to the ZIKV RdRp. To refine the selection, these compounds underwent a re-docking process, comparing their binding energies with a reference molecule known for its inhibitory action against RdRp. Remarkably, five compounds, labeled CMNPD30598, CMNPD27464, CMNPD25971, CMNPD27444, and CMNPD16599, demonstrated superior re-docking energies compared to the reference, suggesting a stronger interaction with the RdRp allosteric site. Subsequent molecular dynamics (MD) simulations provided insights into the stability of these complexes over time, reinforcing their potential as RdRp inhibitors. Additionally, the calculation of free binding energies and principal component analysis (PCA) of the free energy landscape offered a deeper understanding of the binding dynamics and energetics. This study not only highlights the utility of marine fungi compounds in antiviral drug discovery but also showcases the power of computational tools in identifying novel therapeutics. The identified compounds represent promising candidates for further experimental validation and development as ZIKV RdRp inhibitors.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/144/44.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.