80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pharmacoinformatics approach for type 2 diabetes mellitus therapeutics using phytocompounds from Costus genus: an in-silico investigation

, , , , &
Received 22 Sep 2023, Accepted 08 Mar 2024, Published online: 21 Mar 2024
 

Abstract

Type 2 Diabetes Mellitus (T2DM), as a significant health concern globally, particularly in India, underscoring the vital need for effective therapeutics. Current drug therapies for T2DM may have limitations, leading researchers to explore natural products as alternatives. In this study. We have investigated the anti-diabetic compounds from the Costus genus, known as the insulin plant, which is abundant in southern India. The bioinformatics tools and software used for in-silico analysis to identify potential therapeutic compounds and hub genes associated with T2DM in the Indian population that could cut short the in-vitro and in-vivo experimental approaches in near future. The systematic review and combinatorial in-silico analysis revealed IGF2BP2, INS and TCF as the key targets that are associated with T2DM. The compounds stigmasterol, cycloartenol, and diosgenone were explored to be potent among all the 38 phytocompounds from genus Costus with binding energies −8.48, −10.07, and −10.31 kcal/mol against IGF2BP2, INS and TCF. The molecular dynamics (MD) simulation studies of these complexes demonstrated stable and consistent dynamic behavior, particularly in the INS-cycloartenol, IGF2BP2-stigmasterol and TCF7L2-diosgenone complexes. The identified compounds and associated targets represent potential candidates for T2DM therapeutics in the Indian population. The pharmacoinformatics approach presented in the study could streamline the drug discovery process by prioritizing compounds for further experimental validation.

Communicated by Ramaswamy H. Sarma

Acknowledgments

We thank the Director of the National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, and the Department of Pharmaceuticals, Ministry of Chemicals and Fertilisers, Government of India, for providing the necessary resources and assistance.

Disclosure statement

The author declares no conflict of interest.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.