69
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of the efficacy of marine natural products against PARP-1/2 proteins in high-grade serous ovarian cancer: insights into MD and SMD simulations

ORCID Icon & ORCID Icon
Received 22 Jan 2024, Accepted 20 Mar 2024, Published online: 17 Jun 2024
 

Abstract

High-grade serous ovarian cancer (HGSOC) is the most malignant and ubiquitous phenotype of epithelial ovarian cancer. Originating in the fallopian tubes and rapidly spreading to the ovaries, this highly heterogeneous disease is a result of serous tubal intraepithelial carcinoma. The proteins known as poly(ADP-ribose) polymerase (PARP) aid in the development of HGSOC by repairing the cancer cells that proliferate and spread metastatically. By using molecular docking to screen 1100 marine natural products (MNPs) from different marine environments against PARP-1/2 proteins, prominent PARP inhibitors (PARPi) were identified. Four compounds, alisiaquinone A, alisiaquinone C, ascomindone D and (+)-zampanolide referred to as MNP-1, MNP-2, MNP-3 and MNP-4, respectively, were chosen based on their binding affinity towards PARP-1/2 proteins, and their bioavailability and drug-like qualities were accessed using ADMET analysis. To investigate the structural stability and dynamics of these complexes, molecular dynamics simulations were performed for 200 ns. These results were compared with the complexes of olaparib (OLA), a PARPi that has been approved by the FDA for the treatment of advanced ovarian cancer. We determined that MNP-4 exhibited stronger binding energies with PARP-1/2 proteins than OLA by using MM/PBSA calculations. Hotspot residues from PARP-1 (E883, M890, Y896, D899 and Y907) and PARP-2 (Y449, F450, A451, S457 and Y460) showed strong interactions with the compounds. To comprehend the unbinding mechanism of MNP-4 complexed with PARP-1/2, steered molecular dynamics (SMD) simulations were performed. We concluded from the free energy landscape (FEL) map that PARP-1/2 are well-stabilised when the compound MNP-4 is bound rather than being pulled away from its binding pockets. This finding provides significant evidence regarding PARPi, which could potentially be employed in the therapeutic treatment of HGSOC.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The author, S.P., thanks the SRM Institute of Science and Technology (SRMIST) for providing a Research Fellowship for her work. The authors also thank the SRMIST for providing the supercomputing facility and financial support.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,074.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.