243
Views
16
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Ensuring feasibility in location problems with stochastic demands and congestion

, , &
Pages 467-481 | Received 01 May 2007, Accepted 01 Jun 2008, Published online: 03 Mar 2009
 

Abstract

A location problem with stochastic demand and congestion where mobile servers respond to service calls originating from nodes is considered. The problem is of the set-covering type: only servers within the coverage radius of the demand-generating node may respond to a call. The service level constraint requires that at least one server must be available to respond to an arriving call, with some prespecified probability. The objective is to minimize the total number of servers. It is shown that earlier models quite often overestimate servers' availability and thus may lead to infeasible solutions (i.e., solutions that fail to satisfy the service level constraint). System stability conditions and lower bounds on system availability are developed by analyzing the underlying partially accessible queueing system. These lead to the development of two new models for which feasibility is guaranteed. Simulation-based computational experiments show that the proposed models achieve feasibility without significantly increasing the total number of servers.

[Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for the following free supplemental resource: Appendix of Tables of Computational Results for Section 7.]

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 202.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.