767
Views
43
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLES

Economic lot-sizing with remanufacturing: complexity and efficient formulations

, , &
Pages 67-86 | Received 01 Aug 2010, Accepted 01 Apr 2013, Published online: 18 Oct 2013
 

Abstract

Within the framework of reverse logistics, the classic economic lot-sizing problem has been extended with a remanufacturing option. In this extended problem, known quantities of used products are returned from customers in each period. These returned products can be remanufactured so that they are as good as new. Customer demand can then be fulfilled from both newly produced and remanufactured items. In each period, one can choose to set up a process to remanufacture returned products or produce new items. These processes can have separate or joint setup costs. In this article, it is shown that both variants are NP-hard. Furthermore, several alternative mixed-integer programming (MIP) formulations of both problems are proposed and compared. Because “natural” lot-sizing formulations provide weak lower bounds, tighter formulations are proposed, namely, shortest path formulations, a partial shortest path formulation, and an adaptation of the (l, S, WW) inequalities used in the classic problem with Wagner–Whitin costs. Their efficiency is tested on a large number of test data sets and it is found that, for both problem variants, a (partial) shortest path–type formulation performs better than the natural formulation, in terms of both the linear programming relaxation and MIP computation times. Moreover, this improvement can be substantial.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 202.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.