Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 25, 2008 - Issue 1
159
Views
10
CrossRef citations to date
0
Altmetric
Original

A Lunar Clock Changes Shielding Pigment Transparency in Larval Ocelli of Clunio marinus

, , , , &
Pages 17-30 | Received 25 Sep 2007, Accepted 09 Nov 2007, Published online: 07 Jul 2009
 

Abstract

Living in the tidal zones of the sea requires synchronization with the dominant environmental influences of tidal, solar, and lunar periodicity. Endogenous clocks anticipate those geoclimatic changes and control the respective rhythms of vital functions. But the underlying mechanisms are only partly understood. While the circadian clocks in animals are investigated employing neurobiological, molecular, and genetic approaches, clocks with a lunar periodicity have been studied with reference to development and behavior only. Sites of their pacemakers, zeitgeber receptors, and coupled endocrine components are unknown. Here, a lunar‐rhythmic change of shielding pigment transparency in the larval ocelli of the intertidal midge Clunio marinus is demonstrated for the first time as a possible access to the neurobiology of lunar timing mechanisms. We studied third instar larvae (Vigo strain) throughout the lunar cycle by light‐ and electron-microscopy as well as by x‐ray fluorescence analysis for the identification of the pigment. Moonlight detection is a prerequisite for photic synchronization of the lunar clock. The larval ocelli of Clunio putatively may function as moonlight receptors and are also controlled by the circalunar clock itself, hence being primary candidates for tracing input and output pathways of the lunar pacemaker. Additionally, the demonstration of a reversible optical change of shielding pigment transparency in Clunio is a novel finding, not reported so far in any other animal species, and reveals a mechanism to enhance photosensitivity under the condition of very dim light. It represents a remarkable change of a sense organ from an imaging device to a radiometer. Its restriction to the developmental stage susceptible to lunar timing elucidates a unique sensory strategy evolved at the level of sensory input. It also raises basic questions about the biochemistry of optically active pigments, like melanin, and their intracellular control.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.