Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 1
293
Views
15
CrossRef citations to date
0
Altmetric
Original

Human Retinal Light Sensitivity and Melatonin Rhythms Following Four Days in Near Darkness

, , &
Pages 93-107 | Received 23 Apr 2008, Accepted 22 Sep 2008, Published online: 07 Jul 2009
 

Abstract

The rods in the retina are responsible for night vision, whereas the cone system enables day vision. We studied whether rod function in humans exhibits an endogenous circadian rhythm and if changes occur in conditions of prolonged darkness. Seven healthy subjects (mean age±SD: 25.6±12.3 yr) completed a 4.5‐day protocol during which they were kept in complete darkness (days 1 and 4) and near darkness (<0.1 lux red light, days 2 and 3). Electroretinography (ERG) and saliva collections were done at intervals of at least 3 h for 27 h on days 1 and 4. Full‐field ERGs were recorded over 10 low‐intensity green light flashes known to test predominantly rod function. As a circadian marker, salivary melatonin concentration was measured by radioimmunoassay. The ERG data showed that rod responsiveness to light progressively diminished in darkness (significantly lower a‐ and b‐wave amplitudes, longer b‐wave implicit time). The decrease in amplitude (b‐wave) from day 1 to day 4 averaged 22±14%. After correction for the darkness‐related linear trend, the circadian variations in ERG indices were weak and usually non‐significant, with slightly higher responsiveness to light during the day than night. Rod sensitivity (by K index) tended to decrease. Strikingly, the overall amount of melatonin secretion (area under 24 h curve) also decreased from day 1 to day 4 by 33.1±18.9% (p=.017). The drift of the melatonin rhythm phase was within the normal range, less than 56 min over three days. There was no significant correlation between the changes in ERG responses and melatonin. In conclusion, scotopic retinal response to (low‐intensity) light and the amount of melatonin secreted are diminished when humans are kept in continuous darkness. Both processes may have a common underlying mechanism implicating a variety of neurochemicals known to be involved in the regulation of both photoreceptor and pineal gland function.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.