Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 37, 2020 - Issue 4
441
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Hypothalamus but not liver retains daily expression of clock genes during hibernation in terai tree frog (Polypedates teraiensis)

, &
Pages 485-492 | Received 20 Aug 2019, Accepted 14 Jan 2020, Published online: 12 Feb 2020
 

ABSTRACT

Circadian clock(s) allow an organism to be in synchrony with the surrounding environment and perform daily and seasonal physiological processes, including hibernation, migration, and reproduction. To cope with adverse environmental conditions, organisms have evolved various strategies. Insects undergo diapause, while some higher animals either migrate or hibernate/aestivate during unfavorable environmental conditions. Hibernation is an energy conservation strategy used to cope with adverse environmental conditions. Limited knowledge is available on the physiology of hibernation in non-mammalian vertebrates. Some studies suggest that metabolism is altered during amphibian hibernation, but nothing is known about the circadian clock. In the present study, we investigated daily oscillation of clock genes in the brain and liver of the terai tree frog (Polypedates teraiensis) during two annual phases of life: breeding and hibernation. Adult male terai tree frogs were procured from their natural habitat on the Mizoram University campus (23°N 92°E) during their breeding and hibernation phases. Body mass and testes weight were recorded. Animals were sacrificed at six time points: ZT1, ZT5, ZT9, ZT13, ZT17, and ZT21 (ZT0, zeitgeber time 0, indicates the sunrise time at the respective time of the year; N = 5 frogs per time point). Quantitative real-time polymerase chain reaction (qPCR) was performed for clock genes (Bmal1, Clock, Per2, and Cry2) in the hypothalamus and liver. Our results showed that body and testes weights decreased during hibernation. Further, the hypothalamus retained daily clock gene oscillations during breeding and hibernation. However, the liver lost this daily oscillation during hibernation. The maintained rhythm in hypothalamus in contrast to other hibernating animals might be the result of the fact that these animals hibernate at a higher temperature and might be more alert. As the animals have no food intake during their hibernation season which might be the reason the animals loose their rhythm in liver clock genes. These results suggest that retaining daily clock gene oscillations in the hypothalamic clock could be important for internal time tracking and post-hibernation emergence.

Acknowledgments

We are thankful to our reviewers whose constructive suggestions helped us to improve the quality of the manuscript. Financial support to AKT via SERB (ECR/2016/000626) and DBT New Delhi is greatly acknowledged. We also acknowledge the instrumentation facility supported under DST-FIST program to department of Zoology, Mizoram University.

Declaration of interest

We declare no conflict of interest.

Supplementary material

Supplemental data for this article can be accessed publisher’s website.

Additional information

Funding

This work was supported by the Science and Engineering Research Board [ECR/2016/000626].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.