Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 37, 2020 - Issue 7
1,237
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

A novel machine learning unsupervised algorithm for sleep/wake identification using actigraphy

ORCID Icon, , & ORCID Icon
Pages 1002-1015 | Received 02 Mar 2020, Accepted 03 Apr 2020, Published online: 28 Apr 2020
 

ABSTRACT

Actigraphy is widely used in sleep studies but lacks a universal unsupervised algorithm for sleep/wake identification. An unsupervised algorithm is useful in large-scale population studies and in cases where polysomnography (PSG) is unavailable, as it does not require sleep outcome labels to train the model but utilizes information solely contained in actigraphy to learn sleep and wake characteristics and separate the two states. In this study, we proposed a machine learning unsupervised algorithm based on the Hidden Markov Model (HMM) for sleep/wake identification. The proposed algorithm is also an individualized approach that takes into account individual variabilities and analyzes each individual actigraphy profile separately to infer sleep and wake states. We used Actiwatch and PSG data from 43 individuals in the Multi-Ethnic Study of Atherosclerosis study to evaluate the method performance. Epoch-by-epoch comparisons and sleep variable comparisons were made between our algorithm, the unsupervised algorithm embedded in the Actiwatch software (AS), and the pre-trained supervised UCSD algorithm. Using PSG as the reference, the accuracy was 85.7% for HMM, 84.7% for AS, and 85.0% for UCSD. The sensitivity was 99.3%, 99.7%, and 98.9% for HMM, AS, and UCSD, respectively, and the specificity was 36.4%, 30.0%, and 31.7%, respectively. The Kappa statistic was 0.446 for HMM, 0.399 for AS, and 0.311 for UCSD, suggesting fair to moderate agreement between PSG and actigraphy. The Bland–Altman plots further show that the total sleep time, sleep latency, and sleep efficiency estimates by HMM were closer to PSG with narrower 95% limits of agreement than AS and UCSD. All three methods tend to overestimate sleep and underestimate wake compared to PSG. Our HMM approach is also able to differentiate relatively active and sedentary individuals by quantifying variabilities in activity counts: individuals with higher estimated activity variabilities tend to show more frequent sedentary behaviors. Our unsupervised data-driven HMM algorithm achieved better performance than the commonly used Actiwatch software algorithm and the pre-trained UCSD algorithm. HMM can help expand the application of actigraphy in cases where PSG is hard to acquire and supervised methods cannot be trained. In addition, the estimated HMM parameters can characterize individual activity patterns and sedentary tendencies that can be further utilized in downstream analysis.

Acknowledgements

We thank the National Sleep Research Resource for sharing data to benefit the scientific community.

Disclosure statement

There are no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 489.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.