1,113
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Eutrophication and cyanobacteria blooms in run-of-river impoundments in North Carolina, U.S.A.

, , , , , , & show all
Pages 179-192 | Published online: 23 Jan 2009
 

Abstract

We compared monthly data taken during the dry summer growing season of 2002 in 11 potable water supply reservoirs (19–85 years old based on year filled) within the North Carolina Piedmont, including measures of watershed land use, watershed area, reservoir morphometry (depth, surface area, volume), suspended solids (SS), nutrient concentrations (total nitrogen, TN; total Kjeldahl nitrogen, TKN; nitrate + nitrite, NO3− + NO2−; total phosphorus, TP; total organic carbon), phytoplankton chlorophyll a (chla) concentrations, cyanobacteria assemblages, and microcystin concentrations from monthly data taken during the dry summer 2002 growing season. The reservoirs were considered collectively or as two subgroups by age as “mod.” (moderate age, 19–40 years post-fill, n = 5) and “old” (74–85 yr post-fill, n = 6). The run-of-river impoundments were meso-/eutrophic and turbid (means 25–125 μg TP/L, 410–1,800 μg TN/L, 3–70 μg chla/L and 5.7–41.9 mg SS/L). Under drought conditions in these turbid systems, there was a positive relationship between chla and both TN and TP, supported by correlation analyses and hierarchical ANOVA models. The models also indicated significant positive relationships between TN and TP, and between SS and both TP and TN. Agricultural land use was positively correlated with TKN for the reservoirs considered collectively, and with TN, TKN, TP, and chla in mod. reservoirs. In models considering the reservoirs by age group, TN:TP ratios were significantly lower and NO3− + NO2− was significantly higher in old reservoirs, and these relationships were stronger when reservoir age was used as a linear predictor. Cyanobacteria assemblages in the two reservoir age groups generally were comparable in abundance and species composition, and comprised 60–95% (up to 1.9 × 106 cells/mL) of the total phytoplankton cell number. Potentially toxic taxa were dominated by Cylindrospermopsis raciborskii and C. philippinensis. Although known microcystin producers were low in abundance, microcystin (< 0.8 μg/L) was detected in most samples. TP and chla were significant predictors of total cyanobacterial abundance. The data suggest that at present these turbid, meso-/eutrophic reservoirs have moderate cyanobacteria abundance and low cyanotoxin (microcystin) levels over the summer growing season, even in low-precipitation seasons that favor cyanobacteria. Accelerated eutrophication from further watershed development is expected to promote increased cyanobacterial abundance and adversely affect the value of these reservoirs as potable water supplies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.