110
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Optimal sequential testing for an inverse Gaussian process

&
Pages 69-83 | Received 09 Feb 2015, Accepted 14 Jul 2015, Published online: 07 Mar 2016
 

ABSTRACT

We analyze the Bayesian formulation of the sequential testing of two simple hypotheses for the distributional characteristics of an inverse Gaussian process. This problem arises when we are willing to test the positive drift of an unobservable Brownian motion, for which only the first passage times over positive thresholds can be recorded. We show that the initial optimal stopping problem for the posterior probability of one of the hypotheses can be reduced to a free-boundary problem, whose unknown boundary points are characterized by the principles of the continuous or smooth fit and whose unknown value function solves a linear integro-differential equation over the continuation set. A numerical scheme, based on the collocation method for boundary value problems, is further illustrated, in order to get precise approximations of the free-boundary problem solution, which seems to be very hard to derive analytically, because of the particular structure of the Lévy measure of an inverse Gaussian process.

MATHEMATICS SUBJECT CLASSIFICATION:

Acknowledgements

The authors wish to thank the Editor, the Associate Editor, and the reviewer for their valuable suggestions that improved the presentation of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 955.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.