86
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Gill filament differentiation and experimental colonization by symbiotic bacteria in aposymbiotic juveniles of Codakia orbicularis (Bivalvia: Lucinidae)

, &
Pages 219-231 | Received 16 Feb 1998, Accepted 31 Mar 1998, Published online: 01 Dec 2010
 

Summary

Codakia orbicularis is a tropical lucinid harboring gill endosymbionts which are environmentally transmitted from a free living-symbiont form to the new host generation after metamorphosis. Structural changes occurring in the cellular organization from incomplete gill filaments in young aposymbiotic juveniles to full differentiated gill filaments containing bacterial endosymbionts in reared symbiotic juveniles, were analyzed for juveniles from 250 μm to 2 μm shell-length. Aposymbiotic juveniles possess differentiated gill filaments with ciliated, intermediary, and lateral zones similar to those described in wild juveniles, except for the bacteriocytes which are lacking. Granule cells, which progressively differentiate during the morphogenesis of the gill filament, do not appear as a consequence of symbiosis. Experimental colonization of aposymbiotic juveniles by the free-living symbiont form has been obtained through the addition of unsterilized sand collected from the natural habitat of C. orbicularis. Two days after exposure to crude sand, symbiosis-competent bacteria enter by endocytosis at the apical pole of undifferentiated cells which progressively differentiate into classical bacteriocytes similar to those found in the adult gill filaments. Undifferentiated cells of aposymbiotic gill filaments remain receptive to bacteria several months after metamorphosis, and become bacteriocytes when aposymbiotic juveniles get contact with the symbiont free-living form. Therefore, the environmental transmission of symbionts does not appear to be restrained to a defined period of time during post-larval development in C. orbicularis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.