Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 53, 2006 - Issue 4
108
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Foraminiferal record of the postglacial (Holocene) marine transgression and subsequent regression, northern Spencer Gulf, South Australia

&
Pages 565-576 | Received 14 Oct 2005, Accepted 16 Jan 2006, Published online: 02 Feb 2007
 

Abstract

Core SG120 recovered 3.65 m of Quaternary sediment from a northern, shallow-water environment of Spencer Gulf, a marine embayment into the southern continental margin of Australia. Previous investigations had revealed that the upper interval 0 – 148 cm is Holocene marine bioclastic sediment, and that the lower Late Pleistocene interval 250 – 365 cm, with its carbonate palaeosol, had a similar marine origin. However, the age and origin of the interval 148 – 250 cm remained subject to ambiguous interpretation. Re-examination of core SG120, employing detailed foraminiferal analysis, has revealed that this middle unit records the earliest sedimentation associated with the postglacial marine transgression into the northern gulf. These basal Holocene sediments, which incorporated broken, corroded and carbonate-encrusted tests from the underlying palaeosol, together with tests of more pristine appearance, were deposited in a shallow-water, seagrass sandflat environment similar to those in coastal settings of the modern gulf. The lithological change at 148 cm has therefore been reinterpreted as a facies change related to increasing water depth. Radiocarbon analyses of fossil molluscs support this interpretation and reveal that marine transgression, at the site of SG120, was initiated prior to 8600 y cal BP. Selected species of foraminifers (Nubecularia lucifuga, Massilina milletti, Peneroplis planatus, Discorbis dimidiatus, Elphidium crispum and E. macelliforme) together reveal a consistent record of the final stages of the transgression with maximum water depth indicated at a core depth of 90 cm. Subsequent regression, which has been attributed to the combined effects of hydroisostatic uplift and sediment aggradation, is equally recorded by the foraminiferal assemblages.

Acknowledgements

John Hails, Victor Gostin and Tony Belperio collected the core, which was curated at the core library of Primary Industries and Resources South Australia. Brian Logan provided assistance at the core library, and Mary-Anne Binnie sampled the core and prepared samples for microscopic examination. IP acknowledges the University of Turku – University of South Australia student exchange program. This work was financially supported by the University of South Australia. We thank Stephen Gallagher, Victor Gostin and Patrick Quilty for their helpful comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 487.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.