Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 54, 2007 - Issue 4
279
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Controls on the genesis of a high-fluoride thermal spring: Innot Hot Springs, north Queensland Footnote*

&
Pages 597-607 | Received 24 Mar 2006, Accepted 01 Dec 2006, Published online: 18 Jun 2007
 

Abstract

This study reports on the source, evolution, reactions and environmental impacts of F-rich thermal water at Innot Hot Springs, north Queensland. Thermal water of the Innot Hot Springs has a surface temperature of 71°C, alkaline pH (8.1), low dissolved oxygen (0.61 mg/L) and low total dissolved solids (652 mg/L). The main chemical composition is Na – Cl, with F concentrations (16 mg/L) being comparatively high. Concentrations of alkali and alkali-earth metals (Cs, Li, Rb, Sr) are elevated, while those of other trace elements (Ag, Al, As, Ba, Be, Cr, Cu, Ga, Mn, Mo, U, Zn) are significantly less. Hydrochemical and stable isotope data of hot spring water show that the fluid is meteoric in origin and has undergone significant water – granite interaction. Common geothermometers suggest temperatures of water – rock interaction at depth in the 119 – 158°C range (corresponding to a depth of <3.9 – 5.2 km). Solubility modelling of the thermal fluid demonstrates that the evolution of F concentrations in spring waters at the discharge site can be accounted for by fluid – rock interaction of a H2O – NaCl solution with fluorite – calcite-bearing granite assemblages between 150 and 200°C and subsequent granite-buffered cooling. Modelling also indicates that the F concentration in the hydrothermal system is largely controlled by interactions with fluorite, with less evidence for the significant involvement of F-topaz. Speciation calculations demonstrate that F speciation in the fluid is dominated by F (99.4%), followed by minor CaF+ (0.5%) and NaF(aq) (0.1%), and traces of other F complexes. Thus, the F-rich Innot Hot Springs result from meteoric water circulating through fluorite-bearing granitic rocks and are the surface expression of a low-temperature, non-volcanic geothermal system. Discharge of the hot spring water occurs into an ephemeral stream located in a seasonally wet – dry tropical climate. As a result, the F content of local surface waters is distinctly elevated (max. 18 mg/L) during the dry season, making them unsuitable for stock water supplies.

Acknowledgements

D. Craw and P. Ashley are thanked for cogent reviews of the manuscript.

Notes

*Appendix 1 [indicated by an asterisk (*) in the text and listed at the end of the paper] is a Supplementary Paper; copies may be obtained from the Geological Society of Australia's website (www.gsa.org.au) or from the National Library of Australia's Pandora archive (http://nla.gov.au/nla.arc-25194).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 487.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.