Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 64, 2017 - Issue 7
468
Views
15
CrossRef citations to date
0
Altmetric
Review Article

Denudation history of the Southeastern Highlands of Australia

ORCID Icon
Pages 841-850 | Received 27 Jan 2017, Accepted 10 Sep 2017, Published online: 29 Oct 2017
 

ABSTRACT

The low-relief summit plateaus (high plains) of the Southeastern Highlands are remnants of a widespread peneplain that was initially uplifted in the mid-Cretaceous and reached its current elevation in the Miocene–Pliocene. There are two mutually exclusive scenarios for the origin of the high plains: an uplifted peneplain originally formed by long-term denudation through the Mesozoic and late Paleozoic, contrasting with creation by ∼1.5 km of erosion following the mid-Cretaceous uplift (based on fission track data). The hypothesis of a Mesozoic peneplain is consistent with the low relief of the high plains, the ca 200 Ma available to form the peneplain, and the pre-late Mesozoic oxygen-isotope composition of secondary kaolinites in weathering profiles on the high plains. If the ca 30 Ma cooling event recorded by the fission track data is due to ∼1.5 km of denudation, then the high plains peneplain formed in the Late Cretaceous–early Paleogene, close to sea-level, and was uplifted in the early Paleogene, because evidence from basalts and fossil floras shows that the high plains surface was moderately elevated in the Eocene. This scenario is difficult to reconcile with the long-term erosion necessary to form such an extensive peneplain, the lack of sedimentary evidence for early Paleogene uplift, and the relatively small reduction in elevation (∼250 m) that would have resulted from ∼1.5 km of erosion (because the crust in this area is in isostatic equilibrium). Furthermore, extensive Cretaceous–early Paleogene denudation should have removed the pre-late Mesozoic secondary kaolinites present in weathering profiles in the highlands. There is no evidence that the Mesozoic peneplain was buried by kilometres of sediment and then exhumed in the Cretaceous–early Paleogene. I therefore conclude that the high plains of the Southeastern Highlands are the remnants of a Mesozoic peneplain uplifted in the mid-Cretaceous and again in the Miocene–Pliocene.

Acknowledgements

Reviews by Ian Duddy, Fons VandenBerg and Graham Taylor substantially improved this paper.

Disclosure statement

No potential conflict of interest was reported by the author.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 487.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.