2,629
Views
97
CrossRef citations to date
0
Altmetric
Original Articles

RECOVERY OF METAL VALUES FROM COPPER—ARSENIC MINERALS AND OTHER RELATED RESOURCES

, &
Pages 247-298 | Published online: 18 Jun 2007
 

Abstract

Copper is often associated with arsenic in mixed sulphide minerals such as enargite (Cu3AsS4) and tennantite (Cu12As4S13). Enargite, in particular, is the principal mineral in many deep epithermal copper–gold deposits. Most mining companies avoid exploiting such resources, because the arsenic can become a serious environmental liability or may considerably reduce the resource value due to hefty treatment charges. The few enargite deposits that have been exploited so far are usually rich in gold and silver. The first challenge in the exploitation of copper–arsenic sulphides is the effective separation of arsenic phases from other valuable minerals. In the last decade, though, it was shown that this is possible by pulp-potential adjustment (oxidative conditions) combined with pH adjustments (basic conditions) prior to flotation. In this way, two types of concentrate can be produced: one rich in arsenic and another low in arsenic but rich in other valuable metals. Arsenic-rich concentrates have traditionally been processed pyrometallurgically by reduction roasting to gaseous arsenic sulphide, which is then converted to arsenic trioxide. New pyrometallurgical technologies for the treatment of copper–arsenic sulphides include sulphidization roasting, sulphidization roasting and halogenation, and carbothermic reduction to copper arsenide. The hydrometallurgical treatment of copper–arsenic-antimony resources has been done by atmospheric leaching in alkaline sodium-sulphide solutions. Ultrafine grinding and ferric oxidation at atmospheric pressure, total pressure oxidation at temperatures above 220°C, and bacterial leaching have recently been tried on copper–arsenic sulphides, some with considerable success.

ACKNOWLEDGEMENTS

The authors would like to thank many investigators, particularly Profs. S. H. Castro (Universidad de Concepción, Chile) and W.-T. Yen (Queen's University, Ontario, Canada), who kindly provided copies of their publications for this review. Dr. Robert (Bob) R. Seal II (United States Geological Survey, Virginia, USA) provided some clarifications with regard to enargite thermodynamics. Dr. T.-C. Cheng (formerly with McGill University, Montreal, Quebec, Canada; now with the Royal Mint of Canada, Ottawa, Ontario, Canada) helped the authors to locate several references cited herein.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,048.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.