330
Views
14
CrossRef citations to date
0
Altmetric
Articles

Phosphorus Removal and Iron Recovery from High-Phosphorus Hematite Using Direct Reduction Followed by Melting Separation

, &
Pages 236-245 | Published online: 08 Jun 2016
 

ABSTRACT

To efficiently utilize high-phosphorus oolitic hematite resources, a method using direct reduction followed by melting separation was proposed. In this study, direct reduction behavior of the ore–char briquette and the melting separation behavior of the reduced briquette were investigated. Direct reduction test results show that under investigated conditions, the briquette reached a metallization rate of 80%–88% and a residual carbon value of 0.11–4.85 wt%,and apatite layers were fragmented into tiny particles, some of which were embedded in metallic iron phase. Melting separation test results show that residual carbon can significantly influence the iron recovery rate. For metallic briquettes with the abovementioned qualities, the iron recovery rate ranged from 75% to 98%. To control the phosphorus content in molten iron to be nearly 0.4 wt%, an iron recovery rate of 80% was shown to be adequate.

Funding

The authors acknowledge the financial support provided from the National Natural Science Foundation of China under Project No. 51144010.

Additional information

Funding

The authors acknowledge the financial support provided from the National Natural Science Foundation of China under Project No. 51144010.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,048.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.