409
Views
19
CrossRef citations to date
0
Altmetric
Articles

Interplay of Particle Shape and Surface Roughness to Reach Maximum Flotation Efficiencies Depending on Collector Concentration

&
Pages 412-417 | Published online: 28 Sep 2016
 

ABSTRACT

Particle–particle and bubble–particle-interactions in flotation systems are governed by physico-chemical and hydrodynamic conditions of pulp. Shape factor and roughness of particles significantly affect these interactions, and hence both grade and recovery in flotation. Although many studies have been conducted to understand morphological features of particles, the underlying mechanism of their effect on flotation recovery have not been clearly shown. Towards this aim, acombination of grinding and abrasion processes was applied to mimic grinding in terms of shape and roughness in order to get their corresponding flotation recoveries at different collector levels. For this purpose, glass beads representing smooth spherical particles of –150+106 µm in size along with ground and abraded glass particles of different shapes and roughness were used to evaluate the flotation efficiency of these particles in the absence and presence of amine collector. The dependence of the shape and roughness on the flotation recoveries at different hydrophobicities as monitored by different amine collector concentrations is demonstrated. Finally, the results are discussed to see if morphology ofparticles can be tuned through grinding to achieve maximum flotation efficiencies.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,048.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.