136
Views
31
CrossRef citations to date
0
Altmetric
General Review

Toll-Like Receptors, Transduction-Effector Pathways, and Disease Diversity: Evidence of an Immunobiological Paradigm Explaining All Human Illness?

Pages 255-281 | Published online: 03 Aug 2009
 

Abstract

Membrane-bound Toll-like receptors (TLRs) are frontline guardians in the mammalian innate immune system. They primarily function to recognize pathogen-associated molecular patterns (PAMPs) of invading microorganisms and on activation mount rapid, nonspecific innate responses and trigger sequential delayed specific adaptive cellular responses, which are mediated by complex signal transduction pathways involving adaptor molecules, costimulatory ligands and receptors, kinases, transcription factors, and modulated gene expression. Increasing evidence of multiple functionality and diversity suggests TLRs play critical roles in noninfective medical conditions such as cardiovascular, gastrointestinal, neurologic, musculoskeletal, obstetric, renal, liver, and dermatologic diseases, allergy, autoimmunity, and tissue regeneration. The significance of TLR heterogeneity underscores the possibility for establishing a universal immunobiological model to explain all human disease. Novel immunomodulatory therapies targeting specific or multiple TLRs may in the future offer new tools to combat or eradicate pathogenesis potentially transforming the landscape of current medical treatments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,270.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.