301
Views
13
CrossRef citations to date
0
Altmetric
Reviews

MicroRNA-22-3p as a novel regulator and therapeutic target for autoimmune diseases

, , &
Pages 176-181 | Received 02 Dec 2016, Accepted 09 Jan 2017, Published online: 04 May 2017
 

ABSTRACT

MicroRNAs (miRNAs) are a class of noncoding RNAs and have emerged as critical regulators of gene expression. Some miRNAs play important roles in regulating the function of the immune system and are involved in the pathogenesis of autoimmune diseases. Recent studies suggested that microRNA-22-3p (miR-22-3p) was able to regulate the function of several types of immune cells and may be involved in the development of autoimmune diseases. We systematically reviewed relevant literatures to provide a comprehensive review of the possible roles of miR-22-3p in autoimmune diseases. Published studies suggest that miR-22-3p can act as a novel regulator of autoimmune diseases via several pathways. More studies are needed to further elucidate the exact roles of miR-22-3p in autoimmune diseases. Treatment strategy targeting miR-22-3p is also a promising therapy for autoimmune diseases.

Conflict of interest statement

The authors report no conflicts of interest.

Funding

The present work was supported by grants from the National Natural Science Foundation of China (No. 81270871 and 81471004).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,270.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.