91
Views
0
CrossRef citations to date
0
Altmetric
Articles

Quantitative species determination based on real time PCR–Can the results be expressed as weight/weight equivalents?

ORCID Icon, , , , , , , , , & show all
Pages 116-131 | Published online: 20 Apr 2020
 

ABSTRACT

Food adulteration is a common challenge in the meat industry. Polymerase chain reaction (PCR) has been used as a method to detect contamination from different species of meat. From a consumer perspective, a PCR method with measurements in terms of weight/weight (w/w) ratios will be more familiar. In this study, the focus was on how to convert the results of quantitative analysis from genome/genome (g/g) to w/w using real-time PCR. The mixtures with different ratios of mutton in pork were analyzed as test samples. The c values of different species, as a reflection of the key conversion factors, were established and evaluated. The effects of heat treatment on w/w conversion of PCR data were also assessed. The results indicated that the c value shows significant variability among individual samples. An average c value was found to cause a bias of more than 7% for mixtures in the range of 20–80%. For individual meat samples with pre-determined c-values, real-time PCR was useful for quantitative analysis of mutton contamination in pork within the range of 20–80%, with a bias of detection of less than 2%. However, this method was shown to have a limit of quantification of 5% with mutton in pork. Furthermore, heat treatment (121°C, 15 min) significantly reduced the accuracy of quantitative analyses. Because the c value is not available for most commercial samples, and some food products are subjected to heat treatment as a method of sterilization, accurate quantitative analysis (w/w) may not be an option for commercial samples using PCR-based technology.

Acknowledgments

We thank Letpub (http://www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Supplementary material

Supplemental data for this article can be accessed on the publisher’s website.

Additional information

Funding

This work was supported by the National Key R&D Program of China [2016YFF0203802].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.