Publication Cover
Historical Biology
An International Journal of Paleobiology
Volume 31, 2019 - Issue 9
377
Views
1
CrossRef citations to date
0
Altmetric
Articles

Scaling of species diversity and body mass in mammals: Cope’s rule and the evolutionary cost of large size

Pages 1242-1255 | Received 13 Feb 2018, Accepted 13 Feb 2018, Published online: 23 Mar 2018
 

Abstract

Equations are constructed describing the inverse correlation of species diversity and body mass in extant and Cenozoic mammals. Cope’s rule, the tendency for many mammal clades to increase in body size through time, through phyletic change in single lineages or turnover within species groups, is interpreted as a probability function reducing diversity potential as a tradeoff for ecological/evolutionary gains. The inverse rule predicts that large species in clades will be less diverse than smaller species and, unless origination rates remain high among smaller clade members, clades conforming to Cope’s rule will decline in diversity, moving towards extinction. This proposition is evaluated in the Cenozoic histories of five North American mammal clades; cotton rats, felids, canids, hyaenodontids, and equids. Diversity potential of different size classes within the 3.75 million year phyletic history of the muskrat, Ondatra zibethicus, is also examined. A corollary prediction of the inverse rule, that large species should have longer durations (species lifespans) than small species, is unresolved. Successful clades maintain small size or a significant number of smaller species relative to clade average size. The potential loss of unique extant large mammal species justifies the conservation effort to protect them. The similarity of scaling exponents of species diversity to mass around a slope of -1.0 suggests that species diversity is correlated with home range size, the latter related to the probability of population fragmentation.

Acknowledgments

I am grateful to J. Alroy and X. Wang for making their North American fossil mammal and fossil canid databases, respectively, available for this study. R. Hulbert provided important information regarding equid taxonomy and diversity. I also appreciate the helpful evaluations of the manuscript by X. Wang and an anonymous reviewer.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 471.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.