Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 21, 2008 - Issue 2
204
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Experimental Investigation of Opposing Mixed Convection in a Channel with an open Cavity Below

, &
Pages 99-114 | Published online: 19 Mar 2008
 

Abstract

In this article, mixed convection in an open cavity with a heated wall bounded by a horizontal unheated plate is investigated experimentally. The heated wall is on the opposite side of the forced inflow. The results are reported in terms of wall temperature profiles of the heated wall and flow visualization. The range of pertinent parameters used in this experiment are Reynolds numbers (Re) from 100 to 2,000 and Richardson numbers (Ri) from 4.3 to 6,400. Also, the ratio between the length and the height of cavity (L/D) ranges from 0.5–2.0, and the ratio between the channel and cavity height (H/D) is equal to 1.0. The lack of experimental results on mixed convection in a channel with an open cavity below was an impetus for investigating this configuration when one cavity vertical wall is heated at uniform heat flux. The present results show that at the lowest investigated Reynolds number, the surface temperatures are lower than the corresponding surface temperatures for Re = 2,000 at the same ohmic heat flux. The flow visualization shows that for Re = 1,000, there are two nearly distinct fluid motions: a parallel forced flow in the channel and a recirculation flow inside the cavity. For Re = 100, the effect of a stronger buoyancy determines a penetration of thermal plumes from the heated plate wall into the upper channel. Moreover, the flow visualization shows that for lower Reynolds numbers, the forced motion penetrates inside the cavity, and a vortex structure is adjacent to the unheated vertical plate. At higher Reynolds numbers, the vortex structure has a larger extension while L/D is held constant.

ACKNOWLEDGMENT

This work was supported by MIUR with a 2005 PRIN grant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 352.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.