Publication Cover
Experimental Heat Transfer
A Journal of Thermal Energy Generation, Transport, Storage, and Conversion
Volume 29, 2016 - Issue 3
413
Views
6
CrossRef citations to date
0
Altmetric
Articles

Rheological Property and Thermal Conductivity of Multi-walled Carbon Nano-tubes-dispersed Non-Newtonian Nano-fluids Based on an Aqueous Solution of Carboxymethyl Cellulose

, , , &
Pages 378-391 | Received 10 Jun 2014, Accepted 09 Dec 2014, Published online: 21 Feb 2016
 

Abstract

The non-Newtonian nano-fluids with 0.1, 0.5, 1, and 2 wt% of multi-walled carbon nano-tubes have been prepared by dispersing different amounts of multi-walled carbon nano-tubes into an aqueous solution of carboxymethyl cellulose at a weight fraction of 3 wt%, respectively. The nano-fluids exhibit the shear-thinning rheological behavior. The viscosity of the nano-fluid increases with the weight fraction of multi-walled carbon nano-tubes and decreases with the increase in temperature. The thermal conductivity of all the nano-fluids is higher than that of the base liquid. The thermal conductivity enhancement is as high as 14.6% for the nano-fluid containing 2 wt% of multi-walled carbon nano-tubes.

Funding

This work was supported by the National Natural Science Foundation of China (no. 51276066) and the Key Project of DEGP (no. 2012CXZD0011).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 352.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.