107
Views
46
CrossRef citations to date
0
Altmetric
Original

Enhanced recognition of reactive oxygen species damaged human serum albumin by circulating systemic lupus erythematosus autoantibodies

, , &
Pages 512-520 | Received 22 May 2007, Accepted 13 Jul 2007, Published online: 07 Jul 2009
 

Abstract

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with autoantibodies as a near universal feature of the disease. Earlier investigations from our laboratory revealed increased oxidative damage in SLE patients. Therefore, we hypothesized that oxidative by-products, such as hydroxyl radical (√OH), could lead to neoantigens like √OH damaged human serum albumin (HSA), which could in turn initiate autoimmunity in SLE. In the present study, the binding characteristics of SLE autoantibodies with native and √OH damaged HSA were assessed. SLE patients (n = 74) were examined by direct binding ELISA and the results were compared with healthy age- and sex-matched controls (n = 44). High degree of specific binding by 52.7% of patients sera towards √OH damaged HSA, in comparison to its native analogue (p < 0.05) was observed. Normal human sera showed negligible binding with either antigen. Competitive ELISA and gel retardation assays reiterate the direct binding results. The increase in total serum protein carbonyl levels in the SLE patients was largely due to an increase in oxidized albumin. HSA of SLE patients (SLE-HSA) and normal subjects (normal-HSA) were purified. Spectroscopic analysis confirmed that the SLE-HSA samples contained higher levels of carbonyls than normal-HSA (p < 0.01). SLE-HSA was conformationally altered, with more exposure of its hydrophobic regions. Collectively, the oxidation of plasma proteins, especially HSA, might enhance oxidative stress in SLE patients.

View correction statement:
Erratum

Acknowledgements

The authors would like to thank Prof. Ashok Kumar (Department of Medicine, All India Institute of Medical Sciences, New Delhi) for providing most of the SLE samples. Supported by a research grant from JN Medical College, AMU Aligarh is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.