155
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

LncRNA NEAT1 activates MyD88/NF-κB pathway in bronchopneumonia through targeting miR-155-5p

, , , , , , , , & show all
Pages 104-113 | Received 14 Oct 2020, Accepted 14 Feb 2021, Published online: 09 Mar 2021
 

Abstract

Background

Bronchopneumonia is a disease of the respiratory tract. It leads to other complications and endangers life and health. Long non-coding RNA (lncRNA) participates in the occurrence and development of bronchopneumonia. Nuclear paraspeckle assembly transcript 1 (NEAT1) plays a key role in inflammatory diseases, but the function of NEAT1 in bronchopneumonia remains unclear.

Methods

RT-qPCR and Western blotting were performed to determine genes and proteins expressions. MTT was applied to test cell viability. Cell apoptosis was detected by flow cytometry. RIP was used to investigate the correlation between NEAT1 and miR-155-5p. The interaction between miR-155-5p and NEAT1 or MyD88 was evaluated by the dual-luciferase reporter gene.

Results

NEAT1 and MyD88 were upregulated in BEAS-2B cells by LPS, while miR-155-5p was downregulated. Knockdown of NEAT1 inhibited LPS-induced BEAS-2B cells growth inhibition by inhibiting the apoptosis. In addition, NEAT1 silencing suppressed LPS-induced inflammatory responses in BEAS-2B cells via suppression of TNF-α, IL-1β, IL-6, and IL-18. Meanwhile, NEAT1 is directly bound to miR-155-5p to regulate MyD88/NF-κB axis, and overexpression of miR-155-5p increased cell proliferation and suppressed inflammatory factors expression levels and cell apoptosis. Furthermore, sh-NEAT1-induced inhibition of BEAS-2B cells injury was partially reversed by miR-155-5p inhibitor or MyD88 overexpression.

Conclusion

NEAT1 silencing suppressed LPS-induced BEAS-2B cells injury and inflammation by the mediation of miR-155-5p/MyD88/NF-κB axis. Thus, our study might shed new light on exploring the new strategies for the treatment of bronchopneumonia.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was supported by Special Scientific Research Projects for Public Health Industry [201402024], Key Clinical Specialty Construction and Technical Innovation Project of Hunan Provincial Hospital: Hunan Health Financial Development[(2019)No.4] and Technical Innovation Project of Key Specialty Construction in Hospitals Directly under Hunan Health Commission: Hunan Health Medical Administration Office[(2018)No.187].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.