138
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

microRNA-17-5p downregulation inhibits autophagy and myocardial remodelling after myocardial infarction by targeting STAT3

, , , &
Pages 43-51 | Received 04 Jun 2021, Accepted 09 Oct 2021, Published online: 10 Nov 2021
 

Abstract

MicroRNAs (miRs) are reported to regulate myocardial infarction (MI). This study was performed to investigate the function and mechanism of miR-17-5p in myocardial remodelling after MI. Initially, a mouse model of MI was established and MI mice were infected with lentivirus antago-miR-17-5p vector. High expression of miR-17-5p was found in myocardial tissues after MI. After inhibiting miR-17-5p expression, myocardial fibrosis, scarring, and cardiomyocyte apoptosis were improved, LC3-II/LC3-I ratio and Beclin-1 expression were decreased but p62 expression was increased. The dual-luciferase assay suggested that miR-17-5p targeted STAT3 and negatively regulated its expression. Then, after inhibiting STAT3 expression using STAT3 inhibitor S31-201, the fibrosis, scarring, and cardiomyocyte apoptosis were deteriorated, along with the rise of LC3-II/LC3-I and Beclin-1 expression, the reduction of p62 expression and the reversion of MI attenuation. In conclusion, inhibition of miR-17-5p can inhibit myocardial autophagy through targeting STAT3 and then inhibit myocardial remodelling, thereby protecting the myocardium after MI.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.