323
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Anti-inflammatory effects of trans-cinnamaldehyde on lipopolysaccharide-stimulated macrophage activation via MAPKs pathway regulation

, & ORCID Icon
Pages 219-224 | Received 26 Sep 2017, Accepted 12 Dec 2017, Published online: 22 Jan 2018
 

Abstract

Objectives: Inflammation is a primary response of the innate immune system against various infections. Macrophages are a type of immune cell that have a critical role in the inflammation. Recent studies reported that various natural compounds could regulate immune responses such as inflammation. Trans-cinnamaldehyde (TCA) is a natural compound from cinnamon, especially abundant in cinnamon bark. Previous studies reported that TCA has anti-biofilm, anti-microbial, and anti-cancer activities. However, the anti-inflammatory effects and the mechanism of TCA on macrophages are still unknown.

Materials and methods: Raw 264.7 murine macrophage cells were used in this study. Major assays were MTT, Griess assay, Western blot, enzyme-linked immunosorbent assay (ELISA) and reverse transcription (RT)-PCR analysis.

Results: In this study, we investigated the anti-inflammatory effects of TCA on the RAW 264.7 murine macrophage cell line. TCA significantly decreased lipopolysaccharide (LPS)-induced nitric oxide (NO) production in a dose-dependent manner. Moreover, TCA treatment significantly reduced mRNA expression and protein expression of inducible NO synthase (iNOS) in LPS-stimulated macrophages in a dose-dependent manner. TCA treatment also diminished the mRNA expression level and secretion of IL-1β, IL-6 and TNF-α in LPS-activated macrophages. TCA elicited the anti-inflammatory effects by inhibiting ERK, JNK and p38 MPAKs phosphorylation in the cells.

Discussion and conclusion: TCA elicits the anti-inflammatory effects on LPS-stimulated macrophage activation via suppression of MAPKs phosphorylation, and pro-inflammatory gene expression. Therefore, this study provides important information regarding the use of TCA as a candidate therapeutic agent against inflammation.

Disclosures

The authors have no financial conflict of interest.

Additional information

Funding

This research was supported by a grant from Marine Biotechnology Program [PJT200669] funded by Ministry of Oceans and Fisheries and National Research Foundation of Korea (NRF) grant funded by the Korea government [NRF-2017R1D1A1B03034673], Korea.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.