89
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Dioscin exhibits anti-inflammatory effects in IL-1β-stimulated human osteoarthritis chondrocytes by activating LXRα

, &
Pages 340-345 | Received 29 Feb 2020, Accepted 23 May 2020, Published online: 09 Jun 2020
 

Abstract

Objective

Osteoarthritis (OA) is the most common joint disease that characterized by the degradation of articular cartilage. In this study, we aimed to investigate the anti-inflammatory activity of dioscin on IL-1β-stimulated human osteoarthritis chondrocytes.

Methods

The production of PGE2 and NO was measured in this study. MMP1 and MMP3 were detected by ELISA. The expression of LXRα and NF-κB were tested by western blot analysis.

Results

Treatment of dioscin suppressed the production of PGE2 and NO, as well as the expression of COX-2 and iNOS (their key regulatory genes). Dioscin also attenuated the secretion of MMP1 and MMP3. Furthermore, dioscin inhibited the phosphorylation of NF-κB p65 and IκBα induced by IL-1β. The degradation of IκBα induced by IL-1β was also suppressed by dioscin. Dioscin increased the expression of LXRα and pretreatment of GGPP, the LXRα inhibitor, blocked the anti-inflammatory effects of dioscin.

Conclusions

In conclusion, this study indicated that dioscin-mediated anti-inflammatory effect may be involved in the activation of LXRα.

Disclosure statement

All authors declare that they have no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.