400
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Glycyrrhizic acid, as an inhibitor of HMGB1, alleviates bleomycin-induced pulmonary toxicity in mice through the MAPK and Smad3 pathways

, , , , & ORCID Icon
Pages 461-470 | Received 09 Mar 2021, Accepted 01 Jun 2021, Published online: 18 Jun 2021
 

Abstract

Aim

High-mobility group box 1 (HMGB1) protein has been noticed particularly for its pivotal role in several pathologies. However, the relevance between HMGB1 and pathological progress in lung toxicity still remains unclear. In the study, we evaluated the effect of glycyrrhizic acid as an HMGB1 inhibitor on the early inflammation and late fibrosis in bleomycin-induced pulmonary toxicity in mice.

Methods

We established a bleomycin-induced pulmonary toxicity model to detect the relevance between HMGB1 and pathological changes in the early inflammatory and late fibrotic stages.

Results

We found that bleomycin-induced increase in inflammatory cytokines interleukin (IL)-β1, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, and inflammatory lesions in lung tissue in the early stage of the model. However, markers of fibrosis such as transforming growth factor (TGF)-β1 and α-smooth muscle actin (α-SMA) were significantly elevated on day 7 after bleomycin instillation. Interestingly, HMGB1 also began to rise on day 7, rather than in the early inflammatory phase. However, early (from day 0 to 14 after bleomycin instillation) or late (from day 14 to 28) intervention with HMGB1 neutralizing antibody or glycyrrhizic acid alleviated inflammation and fibrosis through down-regulating the inflammatory signaling mitogen-activated protein kinase (MAPK) and fibrotic signaling Smad3 pathway.

Conclusion

Our results suggested that HMGB1 mediates both inflammation and fibrosis in this model. The development of high-potency and low-toxicity HMGB1 inhibitors may be a class of potential drugs for the treatment of pulmonary fibrosis.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This work was funded by Zhejiang Province Public Welfare Technology Application Research Project of China [2018C37108].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.