304
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Atractylenolide II inhibits tumor-associated macrophages (TAMs)-induced lung cancer cell metastasis

, , , , , , & show all
Pages 227-237 | Received 06 Aug 2021, Accepted 29 Jan 2022, Published online: 15 Feb 2022
 

Abstract

Objective

M2-like tumor-associated macrophages (TAMs) play a crucial role in promoting tumor proliferation, angiogenesis, and metastasis. In the current study, we investigated the relationship between macrophage polarization and the antitumor effect of Atractylenolide II (AT-II) in lung cancer cells.

Materials and methods

Cell viability, migration, and invasion were determined by MTT assay, wound healing assay, and transwell assay, respectively. Flow cytometry analysis showed the percentage of CD206+ cells. Gene expression was determined by real-time PCR, western blotting, and immunofluorescence staining. Lewis lung carcinoma mouse xenograft and metastasis models were used to examine the effects of AT-II on lung cancer in vivo.

Results

AT-II (2.5 and 5 µM) did not cause significant inhibition of A549 cell viability but markedly inhibited IL-4/IL-13-induced M2-like polarization, evidenced by the decreased expression of the M2 surface marker CD206, down-regulation of specific M2-marker genes (Arg-1, IL-10 and TGF-β) as well as inhibition of M2 macrophages-mediated invasion and migration of A549 cells. In addition, AT-II inhibited IL-4/IL-13-induced activation of the STAT6 signaling pathway that is vital in the M2-like polarization of macrophages. In animal models, administration of AT-II (50 mg kg−1, i.g., QD for 21 days) significantly inhibited tumor growth, reduced pulmonary metastatic nodules, and down-regulated the percentages of M2 macrophages (F4/80+ and CD206+) in total macrophages (F4/80+) in tumor tissues and pulmonary metastatic nodules.

Conclusions

AT-II effectively inhibits M2-like polarization, thereby inhibiting lung cancer cell metastasis both in vivo and in vitro, revealing a novel potential strategy for the antitumor effect of AT-II.

Disclosure statement

No conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by the National Natural Science Foundation of China [No. 81202789] and the Natural Science Foundation of Liaoning Province [No. 2019-ZD-0950].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.