121
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Resveratrol protects against ox-LDL-induced endothelial dysfunction in atherosclerosis via depending on circ_0091822/miR-106b-5p-mediated upregulation of TLR4

, , &
Pages 915-924 | Received 01 Jan 2022, Accepted 17 Jun 2022, Published online: 11 Jul 2022
 

Abstract

Background

Atherosclerosis (AS) is the most common inducer of cardiovascular diseases, and resveratrol (RSV) has played a protective function in the endothelial injury of AS. This study was to explore the molecular mechanism of RSV in oxidized low-density lipoprotein (ox-LDL)-mediated endothelial dysfunction.

Methods

Circ_0091822, microRNA-106b-5p (miR-106b-5p) or toll-like receptor (TLR4) levels were examined using reverse transcription-quantitative polymerase chain reaction assay. Cell viability was detected via Cell Counting Kit-8 assay and angiogenesis was assessed by tube formation assay. Cell apoptosis was determined through flow cytometry. The protein analysis was conducted via western blot. Inflammatory cytokines were measured by enzyme-linked immunosorbent assay. The oxidative injury was evaluated using the commercial kits. The binding detection was performed via dual-luciferase reporter assay and RNA pull-down assay.

Results

Circ_0091822 was downregulated by RSV in ox-LDL-treated endothelial cells. RSV promoted cell viability and angiogenesis while inhibiting apoptosis, inflammation, and oxidative stress after exposure to ox-LDL. The circ_0091822 knockdown relieved the ox-LDL-induced cell damages. RSV suppressed the ox-LDL-caused endothelial dysfunction via inducing the downregulation of circ_0091822. Circ_0091822 could target miR-106b-5p, and the reversal of circ_0091822 for RSV function was achieved by sponging miR-106b-5p. Circ_0091822 absorbed miR-106b-5p to elevate the level of TLR4. RSV impeded ox-LDL-induced damages by regulating miR-106b-5p/TLR4 axis.

Conclusion

All these findings suggested that RSV acted as an inhibitory factor in ox-LDL-induced endothelial injury via downregulating circ_0091822 to upregulate miR-106b-5p-related TLR4.

Disclosure statement

No potential conflict of interest was reported by the authors..

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,339.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.