Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 14, 2000 - Issue 4
43
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Removal kinetics of Bacillus cereus spores from a stainless steel surface exposed to constant shear stress 1 ‐ experimental system

, &
Pages 287-297 | Received 23 Jun 1999, Published online: 10 Jan 2009
 

The efficiency of cleaning in place procedures in dairy industries can be greatly affected by the presence of spore‐forming bacteria, which are able to adhere strongly to surfaces and to survive disinfection procedures. Microbial adhesion has been extensively studied, but very few studies have yet reported on the hydrodynamic removal of microorganisms, due to the lack of simple, routinely performable techniques. In this paper, a methodology using a coaxial cylinder double gap viscometer is described, to study the removal kinetics of Bacillus cereus spores from a stainless steel support under hydrodynamic conditions. This method was shown to be reproducible, sensitive and easy to perform, and allowed spore hydrodynamic removal kinetics to be studied as a function of both adhesion and detachment conditions. A high ionic strength attachment medium was shown to enhance adhesion forces, provided it did not contain macromolecules. An increase in shear stress was found to be favorable to spore detachment (4 to 5 times more spores were detached at 28 Pa than at 2 Pa), but removal kinetics were not found to be significantly different for 2 and 15 Pa. Thus, the effect of shear stress on spore removal kinetics may not be linear.

Notes

Corresponding author; e‐mail: [email protected]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.