Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 21, 2005 - Issue 1
457
Views
74
CrossRef citations to date
0
Altmetric
Miscellany

Pyrithiones as antifoulants: Environmental fate and loss of toxicity

, , &
Pages 31-40 | Received 01 Mar 2004, Accepted 02 Feb 2004, Published online: 25 Jan 2007
 

Abstract

The environmental fate and the loss of toxicity of two important antifouling actives, zinc pyrithione (ZnPT) and copper pyrithione (CuPT), were investigated using a bioassay study and an outdoor microcosm study. The bioassay used inhibition of the growth of a marine diatom (Amphora coffeaeformis) to measure the toxicity of ZnPT and CuPT over time in sterile, natural, and sediment-supplemented seawater. In natural seawater and sediment-supplemented seawater in the dark and in sterile seawater exposed to light, growth inhibition was reduced at rates corresponding to the rapid degradation rates for ZnPT and CuPT measured in previous aquatic metabolism, die-away, and photolysis studies. Similarly, the bioassay results from sterile seawater in the dark were consistent with the slower degradation rates measured in abiotic hydrolysis studies. In addition to corroborating the rapid degradation of pyrithione upon exposure to light or sediment, the loss of toxicity indicated that the degradation products were not toxic at the concentrations produced from the dose, which was much higher than predicted environmental concentrations. To supplement environmental fate studies designed to elucidate single-pathway transformations, a microcosm study was conducted to integrate all of the degradation pathways. The study used two sediment and water systems, one of which was dosed during the day and the other at night. The pyrithione degraded rapidly in the water phase, with very little accumulation in the sediment. 2-Pyridine sulfonic acid (PSA) and carbon dioxide were the only detectable degradation products 30 d after dosing. Aquatic toxicity studies with PSA showed no observable effect at concentrations at least three orders of magnitude higher than those for either ZnPT or CuPT. As a result, the worst-case environmental concentration of PSA is expected to be far below the no observable effect concentration.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 939.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.