Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 31, 2015 - Issue 9-10
281
Views
4
CrossRef citations to date
0
Altmetric
Article

Superhydrophobic resistance to dynamic freshwater biofouling inception

, &
Pages 789-797 | Received 22 Sep 2015, Accepted 03 Oct 2015, Published online: 30 Nov 2015
 

Abstract

Superhydrophobic nanotextured surfaces have gained increased usage in various applications due to their non-wetting and self-cleaning abilities. The aim of this study was to investigate nanotextured surfaces with respect to their resistance to the inception of freshwater biofouling at transitional flow conditions. Several coatings were tested including industry standard polyurethane (PUR), polytetrafluoroethylene (PTFE), capstone mixed polyurethane (PUR + CAP) and nanocomposite infused polyurethane (PUR + NC). Each surface was exposed to freshwater conditions in a lake at 4 m s−1 for a duration of 45 min. The polyurethane exhibited the greatest fouling elements, in terms of both height and number of elements, with the superhydrophobic nanocomposite based polyurethane (PUR + NC) showing very little to no fouling. A correlation between the surface characteristics and the degree of fouling inception was observed.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Science Foundation (NSF) under [grant number NSF/EFRI-1038294].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 939.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.