60
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Wetting of Planar Surfaces by a Gay-Berne Liquid Crystal

, , , &
Pages 385-391 | Published online: 26 Oct 2010
 

Abstract

Molecular simulation of the wetting of an unstructured attractive wall by Gay-Berne liquid crystals are reported. Simulations are performed in the grand canonical ensemble on a wide pore at constant temperatures of T *=0.53 and 0.56, corresponding to temperatures below and above the nematic-isotropic-vapor triple point. Close to the coexistence chemical potential, a thick liquid film wets the solid surface. The film is composed of stratified layers of molecules parallel to the solid surface, which follow to a nematic domain at the lower temperature and an isotropic one at the higher temperature. In both cases, the film is in equilibrium with the corresponding vapor phase. Close to the liquid-vapor interface there is a manifest tendency for the molecules to orient themselves parallel to the interface. The adsorption on the wall varies continuously with the thermodynamic parameters considered and no evidence of a first order prewetting transition is observed.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.