43
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

“Nanostructures in Thin-film Epitaxy: Exploring and Exploiting Substrate-mediated Interactions”

Pages 273-279 | Accepted 01 Nov 2003, Published online: 21 Aug 2006
 

Abstract

We review recent advances made in understanding the ramifications of substrate-mediated interactions for thin-film growth. Experimental studies and first-principles calculations with density-functional theory (DFT) indicate that substrate-mediated interactions can significantly influence thin-film growth. We review the findings from our kinetic Monte Carlo simulations used to model the growth of thin films, both with and without substrate-mediated interactions. For Ag heteroepitaxy on Pt(1 1 1), the pair interaction energies and adsorbate diffusion barriers were obtained from DFT calculations. Island densities for this system show significant deviations from what is predicted by classical nucleation theory. The electronic interactions created by the adsorbed atoms lead to the formation of repulsive barriers surrounding small islands and, as a result, sharp island-size distributions are produced. The island-size distributions can be manipulated by changing the growth conditions to yield desirable island sizes and shapes.

Acknowledgements

The authors are supported by NSF grants ECC-0085604 and DGE-9987589.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.