42
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamics simulations of polyampholytes inside a slit

, &
Pages 731-738 | Published online: 19 Aug 2006
 

Abstract

Alternating and diblock polyampholytes confined in a slit with and without an electric field have been simulated by the molecular dynamics method with a Langevin thermostat. It is shown that the slit has a strong effect on the properties of the polyampholyte. The effect is stronger when the electric field is weak, or the temperature is not too high. When a polyampholyte chain moves close to the slit wall, its radius of gyration perpendicular to the wall becomes smaller but that parallel to the wall becomes larger. Owing to the confinement of the slit, the polyampholyte chain closer to the slit wall tends to lie on the wall and becomes more flat. The width of the slit has only a little influence on the properties of solutions near the slit wall, values of several physical statistics are very close with different widths. However, when the electric field strength is strong enough in a narrow slit, the obtained properties obviously differ.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Projects No.20236010, 20476025, 20490200), E-Institute of Shanghai High Institution Grid (No.200303) and the Shanghai Municipal Education Commission of China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.