1,703
Views
178
CrossRef citations to date
0
Altmetric
Original Articles

On the potential of connected stars as auxetic systems

, , &
Pages 925-935 | Received 01 Aug 2005, Accepted 01 Oct 2005, Published online: 22 Nov 2006
 

Abstract

Auxetic materials and structures exhibit the unexpected behaviour of getting wider when stretched and thinner when compressed. This behaviour requires the structures (the internal structure in the case of materials) to have geometric features, which must deform in a way that results in the structure expanding when stretched. This paper assesses the potential for auxetic behaviour of a novel class of two-dimensional periodic structures which can be described as “connected stars” as they contain star-shaped units of different rotational symmetry which are connected together to form two-dimensional periodic structures. These structures will be studied through a technique based on force-field based methods (the EMUDA technique) and it will be shown that some, but not all, of these structures can exhibit auxetic behaviour. An attempt is made to explain the reasons for the presence or absence of a negative Poisson's ratio in these systems.

Acknowledgements

The work of Mr Pierre-Sandre Farrugia, Mr Trevor G. Chircop Bray and Miss Lara Trapani is gratefully acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.