692
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Molecular dynamic studies of the compatibility of some cellulose derivatives with selected ionic liquids

&
Pages 109-115 | Received 01 Jan 2006, Accepted 01 Mar 2006, Published online: 31 Jan 2007
 

Abstract

Molecular dynamics techniques were used to study oligomers that mimic cellulose and various derivatives in the amorphous phase, including cellulose (C), methyl cellulose (MC), hydroxypropyl cellulose (HPC), and carboxymethyl cellulose (CMC). Densities and solubility parameters were determined for a series of oligomers with increasing chain length. Both properties were found to change linearly with the degree of polymerization (from monomers to dodecamers). Extrapolated predictions of the densities (g/cm3) for long chain polymers are: C, 1.42; MC, 1.33; HPC, 1.30; and CMC, 1.42. Computed values for the solubility parameter (MPa1/2) are: C, 25.39; MC, 21.43; HPC, 21.70; and CMC, 24.35. We also evaluated the sensitivity of the solubility parameter to changes in the calculated density and found the dependence to be significant. The calculated solubility parameters were evaluated against experimental and other theoretical values as well as against selected ionic liquids comprised of cations in the imidazolium family and the chloride and trifluoroacetate anions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 827.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.